Using Space Effectively

Maneesh Agrawala

CS 448B: Visualization
Fall 2020

1

What if all covid-19
deaths in the United
States had happened in your neighborhood?
Find out what would happen if your
neighborhood was the epicenter of the
coronavirus pandemic in the United States.

Updated Sept. 24 at 11:43 a.m.
Data updated on Sept. 28, 2020
In partnership with
*Lupa Google News Initiative

At least 204,370 people have died of covid-19 in the

 United States.It can be difficult to comprehend the loss of all these lives in a country so large. The pandemic's heaviest tolls have occurred in clusters, and many Americans don't know anyone who has died. But the disease has killed people in all 50 states, the District and most of the territories.

What if all those deaths had happened near you?
To better understand these losses, this simulation shows what would happen if all reported covid-19
deaths in the country happened around your

Last Time: EDA

3

Data "Wrangling"

One often needs to manipulate data prior to analysis. Tasks include reformatting, cleaning, quality assessment, and integration Some approaches:

Writing custom scripts
Manual manipulation in spreadsheets
Trifacta Wrangler: http://trifacta.com/products/wrangler/
Open Refine: http://openrefine.org

Tableau

5

Specifying Table Configurations

Operands are names of database fields Each operand interpreted as a set \{...\} Data is either O or Q and treated differently

Three operators:
concatenation (+)
cross product (x)
nest (/)

Table Algebra

The operators ($+, x, /$) and operands (O, Q) provide an algebra for tabular visualization

Algebraic statements are mapped to Visualizations - trellis partitions, visual encodings Queries - selection, projection, group-by

In Tableau, users make statements via drag-and-drop Users specify operands NOT operators! Operators are inferred by data type (O, Q)

Table Algebra: Operands

Ordinal fields: interpret domain as a set that partitions table into rows and columns Quarter = \{(Qtr1),(Qtr2),(Qtr3),(Qtr4)\} \rightarrow

Qtr1	Qtr2	Qtr3	Qtr4
Q5592	101760	10582	9825

Quantitative fields: treat domain as single element set and encode spatially as axes Profit $=\{($ Proffit-4 10,650]) $\} \rightarrow$

-	-		- \bullet e*				\bullet			
1	${ }_{-300}$	${ }_{-200}^{1}$	-100	1	100	${ }_{200}$	$\frac{1}{300}$	1	1	1
Profit										

Concatenation (+) Operator

Ordered union of sets

```
Quarter + Product Type
= {(Qtr1),(Qtr2),(Qtr3),(Qtr4)} + {(Coffee), (Espresso)}
= {(Qtr 1),(Qtr2),(Qtr3),(Qtr4),(Coffee),(Espresso)}
```

Qtr1	Qtr2	Qtr3	Qtr4	Coffee	Espresso
48	59	57	53	151	21

Profit + Sales = \{(Profit[-3 10,620]),(Sales[0, 1000])\}

Cross (x) Operator

Cross-product of sets
Quarter x Product Type
$=\{($ Qtr1,Coffee), (Qtr 1, Tea), (Qtr2, Coffee), (Qtr2, Tea), (Qtr3, Coffee), (Qtr3, Tea), (Qtr4, Coffee), (Qtr4,Tea)\}

Qtr1		Qtr2			Qtr3		Qtr4	
Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	
131	19	160	20	178	12	134	33	

Product Type \times Profit =

Nest (/) Operator

Cross-product filtered by existing records
Quarter x Month
creates 12 entries for each qtr. i.e., (Qtr 1, Dec)
Quarłer / Month
creates three entries per quarter based on tuples in database (not semantics)

Ordinal - Ordinal

Grate	Coffee	Produ Espresso	ct Type Herbal Tea	Tea
Colorado	-	-	-	-
Connecticut	-	-	-	-
Florida	-	-	-	-
Illinois	-	,	-	-
Iowa	-	-	-	+
Louisiana	-	-	-	
Massachusetts	-	-	-	-
Missouri	-	-	-	-
Nevada	-	-		-
New Hampshire	-	-	-	-
New Mexico	\bullet	\bullet	-	
New York	-	-	-	-
Ohio	-	-	-	-
Oklahoma	-	-	-	
Oregon	-	-	-	-
Texas	-	-	\bullet	
Utah	-	-	-	-
Washington	-	-	-	-
Wisconsin	-	-	\bullet	\bullet

Ordinal - Quantitative

Summary

Explorafory analysis may combine graphical methods, and statistics

Use questions to uncover more questions

Interaction is essential for exploring large multidimensional dafasets

Announcements

A2: Exploratory Data Anclysis

Use Tableau to formulate $\&$ answer questions
First steps
Step 1: Pick domain \& data Step 2: Pose questions
Step 3: Profile data
Iterate as needed
Create visualizations
Interact with data
Refine questions

Author a report

Screenshots of most insightful views (10+)
Include titles and captions for each view
Due before class on Ocł 6, 2020

Topics
 Graphs and lines
 Selecting aspect ratio
 Fitting data and depicting residuals
 Sorting
 Graphical calculations
 Cartographic distortion

27

Graphs and Lines

Effective use of space

Which graph is better?

Government payrolls in 1937 [Huff 93]

Fill space

Show data with as much resolution as possible Don' t worry about showing zero

Yearly CO2 concentrations [Cleveland 85]

Axis Tick Mark Selection

What are some properties of "good" tick marks? 31

Axis Tick Mark Selection

(a) Heckbert

(b) R's pretty

(c) Wilkinson

(d) Extended

Simplicity - numbers are multiples of 10, 5, 2
Coverage - ticks near the ends of the data
Density - not too many, nor too few
Legibility - whitespace, horizontal text, size

How to Scale the Axis?

33

Clearly mark scale breaks

Scale break vs. Log scale

[Cleveland 85]

Scale break vs. Log scale

[Cleveland 85]
Both increase visual resolution

- Log scale - easy comparisons of all data
- Scale break - more difficult to compare across break

Linear scale vs. Log scale

Linear scale vs. Log scale

Linear scale

- Absolute change

Log scale

- Small fluctuations
- Percent change
$d(10,20)=d(30,60)$

Semilog graph: Exponential growth

Exponential functions ($\mathrm{y}=\mathrm{ka}^{\mathrm{mx}}$) transform into lines
$\log (\mathrm{y})=\log (\mathrm{k})+\log (\mathrm{a}) \mathrm{mx}$
Intercept: $\log (k)$
Slope: $\log (a) m$

$y=6^{0.5 x}$, slope in semilog space: $\log (6)^{*} 0.5=0.3891$

Semilog graph: Exponential decay

Exponential functions ($\mathrm{y}=\mathrm{ka}^{\mathrm{mx}}$) transform into lines $\log (\mathrm{y})=\log (\mathrm{k})+\log (\mathrm{a}) \mathrm{mx}$ Intercept: $\log (\mathrm{k})$
Slope: $\log (a) m$

$\mathrm{y}=0.5^{2 \mathrm{x}}$, slope in semilog space: $\log (0.5)^{*} 2=-0.602$

Log-Log graph

Power functions ($\mathrm{y}=\mathrm{kx} \mathrm{x}^{\mathrm{a}}$) transform into lines Example - Steven's power laws:

$$
S=k I^{p} \rightarrow \log S=\log k+p \log I
$$

Selecting Aspect Ratio

45

47

Banking to $\mathbf{4 5}{ }^{\circ}$ [Cleveland]

To facilitate perception of trends, maximize the discriminability of line segment orientations

Two line segments are maximally discriminable when avg. absolute angle between them is 45°
Optimize the aspect ratio to bank to 45°

An alternate approach:

Minimize arc length (hold area constant)

Straight line -> 45 deg

Ellipse -> Circle [Talbot et al, 2011]

54

63

76

78

Transforming data

How well does curve fit data?

[Cleveland 85]

Transforming data

Residual graph

- Plot vertical distance from best fit curve
- Residual graph shows accuracy of fit

[Cleveland 85]

Sorting

89

91

93

Graphical Calculations

Nomograms

Sailing: The Rule of Three

Nomograms

1. Compute in any direction; fix $\mathbf{n}^{\mathbf{- 1}}$ params and read nth param
2. Illustrate sensitivity to perturbation of inputs
3. Clearly show domain of validity of computation

Slide rule

Model 1474-66 Electrotechnica 18 Scales

Tehnolemn Timisoara Slide Rule Archive
http://pubpages.unh.edu/~iwc/tehnolemn/

98

Lambert's graphical construction

Johannes Lambert used graphs to study the rate of water evaporation as function of temperature [from Tufte 83]

101

Cartographic Distortion

